Learning representations for object classification using multi-stage optimal component analysis

نویسندگان

  • Yiming Wu
  • Xiuwen Liu
  • Washington Mio
چکیده

Learning data representations is a fundamental challenge in modeling neural processes and plays an important role in applications such as object recognition. Optimal component analysis (OCA) formulates the problem in the framework of optimization on a Grassmann manifold and a stochastic gradient method is used to estimate the optimal basis. OCA has been successfully applied to image classification problems arising in a variety of contexts. However, as the search space is typically very high dimensional, OCA optimization often requires expensive computational cost. In multi-stage OCA, we first hierarchically project the data onto several low-dimensional subspaces using standard techniques, then OCA learning is performed hierarchically from the lowest to the highest levels to learn about a subspace that is optimal for data discrimination based on the K-nearest neighbor classifier. One of the main advantages of multi-stage OCA lies in the fact that it greatly improves the computational efficiency of the OCA learning algorithm without sacrificing the recognition performance, thus enhancing its applicability to practical problems. In addition to the nearest neighbor classifier, we illustrate the effectiveness of the learned representations on object classification used in conjunction with classifiers such as neural networks and support vector machines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Houseplants Using Neuro-vision Based Multi-stage Classification System

In this paper, we present a machine vision system that was developed on the basis of neural networks to identify twelve houseplants. Image processing system was used to extract 41 features of color, texture and shape from the images taken from front and back of the leaves. The features were fed into the neural network system as the recognition criteria and inputs. Multilayer perceptron (MLP) ne...

متن کامل

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection

Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...

متن کامل

Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images

As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 21 2-3  شماره 

صفحات  -

تاریخ انتشار 2008